Menu Close

Medical Research – Archive – 2019


In April 2019, a heartbreaking New York Times article outlined the tragic suicide of Olympic cyclist Kelly Katlynn. She came from an enormously competitive and successful family and was going to be a probable medalist in the 2020 Tokyo Olympics. However, after an accident while cycling, she received a mild TBI which adversely affected her cognition. The accident did not involve an injury to her head but afterwards she felt dizzy, had headaches, sensitivity to light and trouble sleeping. Personality changes occurred as well as social isolation and loss of focus and drive. Because her life had been derailed, she decided on suicide. That is the power of a mild traumatic brain injury.


In the 2019 Journal of Neurotrauma patients with cognitive symptoms after a single blunt trauma TBI, with normal CT and normal MRI, were given PET scans of the brain. PET scans measure the rate at which the brain’s fuel, glucose, is consumed – injured areas consuming less. They found that compared to normals the glucose uptake was significantly decreased in the bilateral pre-frontal area and significantly increased around the limbic system. This increased activity is likely a compensatory strategy by the brain to work around injured areas.


The corpus callosum is a thick band of white matter which literally connects both sides of the brain and allows for communication between the two hemispheres (right brain/left brain). The corpus callosum is the most sensitive area of the brain to high velocity changes as in a car accident . Adults with severe chronic TBI underwent MRI/DTI testing of the corpus callosum and performed on the awareness of social inference test (TASIT)which showed a strong correlation between injury to that area and test scores on social awareness. Again, confirming that TBI caused severe social disabilities.


We owe the returning veterans a great deal of thanks for forcing the medical establishment to finally do peer reviewed research on mild TBI. Since the veterans started returning, the last decade has truly been the decade of mild TBI, with hundreds of new studies being done.

This particular study looked at insomnia symptoms one year after TBI. Interestingly those with mild TBI were significantly more likely to have insomnia than those with moderate to severe TBI. They also found that depressive symptom, general anxiety, headache, and binge drinking were significantly associated with insomnia symptoms after TBI.


Sleep disorders are reported with 30 to 70% of TBI cases and they have negative impacts on quality-of-life and rehabilitation. They aggravate psychiatric problems, and sleep apnea has been shown to be highly detrimental in many ways. In the study a total of 72% experienced sleep disturbances compared to 24% in the control group, a significant difference. Another study, found in the Journal of Head Trauma Rehabilitation in 2016, looked at the risks of sleep apnea. A significant predictor of apnea was age. Given the progressive nature of sleep apnea and the serious problems associated with it, earlier identification of apnea is needed.


As if we didn’t have enough to worry about with injuries to our traditional brain, recent studies have shown that our gut microbiome is sending more signals to the brain than the brain sends to the gut. It has been shown that the gut biome is adversely affected by TBI. These changes in the gut can lead to a pro-inflammatory state within the central nervous system. New interventions are being developed.


Researchers in Galveston Texas, including Dr. Randall Urban and Dr Brent Masel, both of whom developed the breakthrough idea of TBI as a chronic disease, were involved in the study. By studying the blood work of chronic TBI patients it was found that even many years after injury these patients exhibited abnormal metabolic responses and altered relationships between circulating amino acids and hormones. This is a chronic disease state whose effects are just being discovered. The condition, known as hypoaminoacidemia, causes a large reduction in the amount of circulating amino acids in the body.


The study looked at life expectancy after traumatic brain injury in those completing inpatient rehabilitation in the US between 2001 and 2010. They found that individuals with TBI were 2.23 times more likely to die than individuals of comparable age, giving them a reduced life expectancy of nine (9) years. Individuals with TBI had a greater risk of death from seizures, accidental poisoning, mental or behavioral problems, external injuries. Those with TBI requiring rehabilitation following acute hospital care were 49 times more likely to die of pneumonia, 22 times more likely to die of seizures, three times more likely to commit suicide, and 2.5 times more likely to die of digestive conditions versus matched populations.